Published in

Elsevier, Biological Psychiatry, 5(79), p. 383-391, 2016

DOI: 10.1016/j.biopsych.2015.08.027

Links

Tools

Export citation

Search in Google Scholar

Association of AADAC Deletion and Gilles de la Tourette Syndrome in a Large European Cohort

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BACKGROUND: Gilles de la Tourette syndrome (GTS) is a complex neuropsychiatric disorder with a strong genetic influence where copy number variations are suggested to play a role in disease pathogenesis. In a previous small-scale copy number variation study of a GTS cohort (n = 111), recurrent exon-affecting microdeletions of four genes, including the gene encoding arylacetamide deacetylase (AADAC), were observed and merited further investigations. METHODS: We screened a Danish cohort of 243 GTS patients and 1571 control subjects for submicroscopic deletions and duplications of these four genes. The most promising candidate gene, AADAC, identified in this Danish discovery sample was further investigated in cohorts from Iceland, the Netherlands, Hungary, Germany, and Italy, and a final meta-analysis, including a total of 1181 GTS patients and 118,730 control subjects from these six European countries, was performed. Subsequently, expression of the candidate gene in the central nervous system was investigated using human and mouse brain tissues. RESULTS: In the Danish cohort, we identified eight patients with overlapping deletions of AADAC. Investigation of the additional five countries showed a significant association between the AADAC deletion and GTS, and a final meta-analysis confirmed the significant association (p = 4.4 × 10(-4); odds ratio = 1.9; 95% confidence interval = 1.33-2.71). Furthermore, RNA in situ hybridization and reverse transcription-polymerase chain reaction studies revealed that AADAC is expressed in several brain regions previously implicated in GTS pathology. CONCLUSIONS: AADAC is a candidate susceptibility factor for GTS and the present findings warrant further genomic and functional studies to investigate the role of this gene in the pathogenesis of GTS.