Published in

Elsevier, Brain Research, (1589), p. 15-25

DOI: 10.1016/j.brainres.2014.07.012

Links

Tools

Export citation

Search in Google Scholar

Redistribution of voltage-gated sodium channels after nerve decompression contributes to relieve neuropathic pain in chronic constriction injury

Journal article published in 2014 by To-Jung Tseng ORCID, 謝松蒼, Yu-Lin Hsieh, Miau-Hwa Ko, Sung-Tsang Hsieh ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nerve decompression is an important therapeutic strategy to relieve neuropathic pain and promote the peripheral nerve regeneration. To address these issues, we investigated the effects of nerve decompression on relief of neuropathic pain behaviors, redistribution of voltage-gated sodium channels (VGSCs), and skin reinnervation with chronic constriction injury (CCI). At post-operative week (POW) 4, animals were divided into a decompression group, in which the ligatures were removed, and a CCI group, in which the ligatures remained. Thermal hyperalgesia and mechanical allodynia at POW 8 had distinct reductions in decompression group compared to CCI group. At that time in CCI group, morphological evidence of pan VGSCs (Pan Nay) and isoforms of VGSCs (Nav1.6, Nav1.9, except for Nav1.8) were shown the widely distribution along the injured sciatic nerve. All of the VGSCs in decompression group became clustering around the node of Ranvier, similar to the pattern of control sciatic nerve at POW 8. Skin reinnervation was demonstrated by epidermal nerve density (END) for protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) nerve fibers and a significant difference between groups only at POW 24 (p=0.01). Growth-associated protein 43 (GAP-43) is participated in the nerve fiber growth and sprouting, a difference in END for GAP-43-IR nerve fibers at POW 24 between groups were also significant (p=0.02). These observations demonstrated that nerve decompression was accompanied with the disappearance of neuropathic pain behaviors after CCI. Morphological studies provided the evidence that redistribution of VGSCs along the injured sciatic nerve but still with an incomplete skin reinnervation. These significant findings demonstrated a role of VGSCs in the pathogenesis of neuropathic pain, and gave an approaching in pharmacological basis of therapeutics. (C) 2014 Published by Elsevier B.V. ; 解剖學暨細胞生物學科暨研究所 ; 醫學院 ; 期刊論文