Published in

Springer, Journal of Materials Research, 7(8), p. 1697-1702, 1993

DOI: 10.1557/jmr.1993.1697

Links

Tools

Export citation

Search in Google Scholar

Synthesis and characterization of cordierite from acetylacetonate/alkoxide precursors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Syntheses of ultrafine glass powders in the MgO–Al2O3–SiO2 ternary oxide system were effected by drying and calcining sols derived from acetylacetonate-tetraethoxysilane ethanol solutions. A mixture of magnesium and aluminum acetylacetonates, dissolved with Si(OC2H5)4 in an ethanol solution in a 2:4:5 Mg: Al: Si mole ratio, was hydrolyzed, spray-dried, and calcined to yield a glass powder of 70 Å primary particle size, which sintered to densities ≥ 2.5 g/cm3 and which formed μ-cordierite as the only crystalline phase below 1000 °C. Incorporation of dopant quantities of boron and phosphorus, via their alkyl esters in the hydrolysis reaction with Si(OC2H5)4 and the acetylacetonates, afforded powders which crystallized in the α-phase directly after sintering to density = 2.66 g/cm3.