Published in

De Gruyter, Biological Chemistry, 11(392), p. 961-971, 2011

DOI: 10.1515/bc.2011.162

De Gruyter, Biological Chemistry, p. ---, 2011

DOI: 10.1515/bc-2011-162

Links

Tools

Export citation

Search in Google Scholar

Contribution of cathepsin L to secretome composition and cleavage pattern of mouse embryonic fibroblasts

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract The endolysosomal cysteine endoprotease cathepsin L is secreted from cells in a variety of pathological conditions such as cancer and arthritis. We compared the secretome composition and extracellular proteolytic cleavage events in cell supernatants of cathepsin L-deficient and wild-type mouse embryonic fibroblasts (MEFs). Quantitative proteomic comparison of cell conditioned media indicated that cathepsin L deficiency affects, albeit in a limited manner, the abundances of extracellular matrix (ECM) components, signaling proteins, and further proteases as well as endogenous protease inhibitors. Immunodetection corroborated that cathepsin L deficiency results in decreased abundance of the ECM protein periostin and elevated abundance of matrix metalloprotease (MMP)-2. While mRNA levels of MMP-2 were not affected by cathepsin L ablation, periostin mRNA levels were reduced, potentially indicating a downstream effect. To characterize cathepsin L contribution to extracellular proteolysis, we performed terminal amine isotopic labeling of substrates (TAILS), an N-terminomic technique for the identification and quantification of native and proteolytically generated protein N-termini. TAILS identified >1500 protein N-termini. Cathepsin L deficiency predominantly reduced the magnitude of collagenous cleavage sites C-terminal to a proline residue. This contradicts cathepsin L active site specificity and indicates altered activity of further proteases as a result of cathepsin L ablation.