Links

Tools

Export citation

Search in Google Scholar

Effect of alloy composition & helium ion-irradiation on the mechanical properties of tungsten, tungsten-tantalum & tungsten-rhenium for fusion power applications

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

ABSTRACTModel alloys have been made of pure W and 1% & 5% W-Ta and W-Re. Indentation hardness and modulus data were obtained by nanoindentation to assess the effect of composition on mechanical properties. Results showed that both the Ta and Re compositions hardened with increasing alloy content, greater in the W-5%Ta composition which showed an increase of 1.03GPa (17%), compared to a 0.43GPa (7%) increase in W-5%Re. The samples also showed very small increases in modulus of ∼ 25GPa (6%) in both W-5%Re and W-5%Ta. The samples were implanted with 3000appm concentration of helium. All samples show a substantial increase in hardness of up to 107% in the case of pure W. An appreciable difference in modulus is also seen in all samples. Initial TEM work has shown no visible He bubbles, suggesting that the mechanical properties changes are due to He-vacancy cluster formation below the resolvable limit.