Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 12(302), p. H2592-H2598, 2012

DOI: 10.1152/ajpheart.00029.2012

Links

Tools

Export citation

Search in Google Scholar

Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO2. Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30–60 days before launch) was compared with postflight testing on landing day ( n = 4) or the morning 1 ( n = 2) or 2 days ( n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BPMCA) and expired CO2 were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BPMCA/CBFV). Cerebrovascular autoregulation and CO2 reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO2 were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during −20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BPMCA ( P = 0.017). The postflight responses to CO2 were reduced for CBFV ( P = 0.056) and CVRi ( P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO2 reactivity.