Published in

American Society for Clinical Investigation, Journal of Clinical Investigation, 6(121), p. 2254-2263

DOI: 10.1172/jci44675

Links

Tools

Export citation

Search in Google Scholar

CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The human lung T cell compartment contains many CD8+ T cells specific for respiratory viruses, suggesting that the lung is protected from recurring respiratory infections by a resident T cell pool. The entry site for respiratory viruses is the epithelium, in which a subset of lung CD8+ T cells expressing CD103 (αE integrin) resides. Here, we determined the specificity and function of CD103+CD8+ T cells in protecting human lung against viral infection. Mononuclear cells were isolated from human blood and lung resection samples. Variable numbers of CD103+CD8+ T cells were retrieved from the lung tissue. Interestingly, expression of CD103 was seen only in lung CD8+ T cells specific for influenza but not in those specific for EBV or CMV. CD103+ and influenza-reactive cells preferentially expressed NKG2A, an inhibitor of CD8+ T cell cytotoxic function. In contrast to CD103–CD8+ T cells, most CD103+CD8+ cells did not contain perforin or granzyme B. However, they could quickly upregulate these cytotoxic mediators when exposed to a type I IFN milieu or via contact with their specific antigen. This mechanism may provide a rapid and efficient response to influenza infection, without inducing cytotoxic damage to the delicate epithelial barrier.