Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (406), 1995

DOI: 10.1557/proc-406-567

Links

Tools

Export citation

Search in Google Scholar

Characterization Of ZnGe(AsxP1-x)2 Crystals By Electrolyte Electroreflectance Spectroscopy

Journal article published in 1995 by Mirko Angelov, Rüdiger Goldhahn ORCID, Olaf Nennewitz, Silke Schün, Silke Schoen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe influence of the material composition on the optical properties of the quaternary compound semiconductor system ZnGe(AsxP1-x)2 was studied for the first time. The crystals have been synthesized by direct solidification from a stoichiometric melt. X-ray diffraction measurements revealed a chalcopyrite type lattice for the quaternary compound. Closer examination by energy dispersive X-ray microprobe analysis yielded the exact element concentrations for the As and P components. Then electrolyte electroreflectance (EER) spectroscopy was used to determine the energies of the fundamental optical transitions as a function of the composition x. The analysis shows an approximately linear increase of the direct band gap with decreasing As content.Furthermore, the influence of the composition on the splitting and ordering of the three highest valence bands was investigated by polarization dependent EER measurements. The spectra for two samples with x = 0.42 and 0.77 allowed the determination of the spin orbit parameter Aso and the crystal field parameter Δ;cf by using the quasicubic model. The values were found close to calculated ones, obtained by the same model under the assumption of a precise linear dependence of the band gap on the composition x.