Published in

Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems - SEAMS 2014

DOI: 10.1145/2593929.2593938

Links

Tools

Export citation

Search in Google Scholar

Requirements-Driven Mediation for Collaborative Security

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Security is concerned with the protection of assets from intentional harm. Secure systems provide capabilities that enable such protection to satisfy some security requirements. In a world increasingly populated with mobile and ubiquitous computing technology, the scope and boundary of security systems can be uncertain and can change. A single functional component, or even multiple components individually, are often insufficient to satisfy complex security requirements on their own. Adaptive security aims to enable systems to vary their protection in the face of changes in their operational environment. Collaborative security, which we propose in this paper, aims to exploit the selection and deployment of multiple, potentially heterogeneous, software-intensive components to collaborate in order to meet security requirements in the face of changes in the environment, changes in assets under protection and their values, and the discovery of new threats and vulnerabilities. However, the components that need to collaborate may not have been designed and implemented to interact with one another collaboratively. To address this, we propose a novel framework for collaborative security that combines adaptive security, collaborative adaptation and an explicit representation of the capabilities of the software components that may be needed in order to achieve collaborative security. We elaborate on each of these framework elements, focusing in particular on the challenges and opportunities afforded by (1) the ability to capture, represent, and reason about the capabilities of different software components and their operational context, and (2) the ability of components to be selected and mediated at runtime in order to satisfy the security requirements. We illustrate our vision through a collaborative robotic implementation, and suggest some areas for future work.