Published in

Public Library of Science, PLoS ONE, 2(8), p. e55352, 2013

DOI: 10.1371/journal.pone.0055352

Links

Tools

Export citation

Search in Google Scholar

Credit Assignment during Movement Reinforcement Learning

Journal article published in 2013 by Gregory Dam, Konrad Kording ORCID, Kunlin Wei
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We often need to learn how to move based on a single performance measure that reflects the overall success of our movements. However, movements have many properties, such as their trajectories, speeds and timing of end-points, thus the brain needs to decide which properties of movements should be improved; it needs to solve the credit assignment problem. Currently, little is known about how humans solve credit assignment problems in the context of reinforcement learning. Here we tested how human participants solve such problems during a trajectory-learning task. Without an explicitly-defined target movement, participants made hand reaches and received monetary rewards as feedback on a trial-by-trial basis. The curvature and direction of the attempted reach trajectories determined the monetary rewards received in a manner that can be manipulated experimentally. Based on the history of action-reward pairs, participants quickly solved the credit assignment problem and learned the implicit payoff function. A Bayesian credit-assignment model with built-in forgetting accurately predicts their trial-by-trial learning.