Published in

American Physical Society, Physical review B, 7(85), 2012

DOI: 10.1103/physrevb.85.075122

Links

Tools

Export citation

Search in Google Scholar

Controlling the frequency-temperature sensitivity of a cryogenic sapphire maser frequency standard by manipulating Fe3+spins in the sapphire lattice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

To create a stable signal from a cryogenic sapphire maser frequency standard, the frequency-temperature dependence of the supporting Whispering Gallery mode must be annulled. We report the ability to control this dependence by manipulating the paramagnetic susceptibility of Fe3+ ions in the sapphire lattice. We show that the maser signal depends on other Whispering Gallery modes tuned to the pump signal near 31 GHz, and the annulment point can be controlled to exist between 5 to 10 K depending on the Fe3+ ion concentration and the frequency of the pump. This level of control has not been achieved previously, and will allow improvements in the stability of such devices. ; Comment: 17 pages, 10 figures