Published in

Bentham Science Publishers, Current Medicinal Chemistry, 14(17), p. 1382-1393

DOI: 10.2174/092986710790980023

Links

Tools

Export citation

Search in Google Scholar

CB1 Cannabinoid Receptors and their Associated Proteins

Journal article published in 2010 by Allyn C. Howlett ORCID, Lawrence C. Blume, George D. Dalton
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CB1 receptors are G-protein coupled receptors (GPCRs) abundant in neurons, in which they modulate neurotransmission. The CB(1) receptor influence on memory and learning is well recognized, and disease states associated with CB(1) receptors are observed in addiction disorders, motor dysfunction, schizophrenia, and in bipolar, depression, and anxiety disorders. Beyond the brain, CB(1) receptors also function in liver and adipose tissues, vascular as well as cardiac tissue, reproductive tissues and bone. Signal transduction by CB(1) receptors occurs through interaction with Gi/o proteins to inhibit adenylyl cyclase, activate mitogen-activated protein kinases (MAPK), inhibit voltage-gated Ca(2+) channels, activate K(+) currents (K(ir)), and influence Nitric Oxide (NO) signaling. CB(1) receptors are observed in internal organelles as well as plasma membrane. beta-Arrestins, adaptor protein AP-3, and G-protein receptor-associated sorting protein 1 (GASP1) modulate cellular trafficking. Cannabinoid Receptor Interacting Protein1a (CRIP1a) is an accessory protein whose function has not been delineated. Factor Associated with Neutral sphingomyelinase (FAN) regulates ceramide signaling. Such diversity in cellular signaling and modulation by interacting proteins suggests that agonists and allosteric modulators could be developed to specifically regulate unique, cell type-specific responses.