Published in

The Royal Society, Proceedings of the Royal Society B: Biological Sciences, 1474(268), p. 1423-1427

DOI: 10.1098/rspb.2001.1656

Links

Tools

Export citation

Search in Google Scholar

Recombination confounds interpretations of Wolbachia evolution.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Wolbachia are vertically transmitted bacteria known from arthropods and nematode worms, which are maintained in host populations because they either physiologically benefit infected individuals or parasitically manipulate their reproduction. The different manipulation phenotypes are scattered across the Wolbachia phylogeny, suggesting that there have been multiple evolutions of similar phenotypes. This conclusion relies on the assumption of an absence of recombination between bacterial strains, so that the gene used to reconstruct the phylogeny reflects the evolutionary history of the genes involved in the trait. We tested for recombination by reconstructing the phylogeny of two Wolbachia genes from seven B-subdivision strains. The two genes produced mutually incompatible topologies, indicating that these lineages are subject to genetic recombination. This means that many evolutionary patterns inferred from Wolbachia phylogenies must be re-evaluated. Furthermore, recombination may be an important feature both in the evolution of the manipulation phenotypes and avoidance of Müller's ratchet. Finally, we discuss the implications of recombination for attempts to genetically engineer Wolbachia for use in the control of crop pests and human pathogens.