Published in

Elsevier, Renewable Energy, (57), p. 120-129

DOI: 10.1016/j.renene.2013.01.037

Links

Tools

Export citation

Search in Google Scholar

Optical performance of solar reflective concentrators: A simple method for optical assessment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In reflective concentrating systems, mirrors play an essential role in directing and concentrating the energy from the sun to the modules. Shortcomings like misalignment, shading or bending of mirrors, due to their weight or wind, imply a higher probability of attenuated energy and non-uniform illumination on the receiver. The objective of this work is to design and test a method to assess the optical quality of solar concentrators, based on the absorber reflection method (ARM), which allows minimising the distance from the camera to the concentrator. The proposed procedure allows the characterization of the optical quality of reflectors when the concentrator is working at different inclinations tracking the sun’s movement. The validation measurements were performed in a two-axis Fresnel reflective solar concentrator. Results from the method developed were included in two numerical procedures, ray-tracing and the sum-of-squares. From these simulations the overall effects of the optical quality and the sunshape over the absorber were considered and compared with the measured experimental concentrated flux distribution profile. ; This work has been supported by the Spanish Science and Innovation Ministry (MICINN) under the grant ENE2010-18357 and by the 6th European Union Research Program Marie-Curie early stage research training network “Advanced solar heating and cooling for buildings e SOLNET”.