Links

Tools

Export citation

Search in Google Scholar

antiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Microbial secondary metabolites are a potent source of antibiotics and other pharmaceuticals. Genome mining of their biosynthetic gene clusters has become a key method to accelerate their identification and characterization. In 2011, we developed antiSMASH, a web-based analysis platform that automates this process. Here, we present the highly improved antiSMASH 2.0 release, available at http://antismash.secondarymetabolites.org/. For the new version, antiSMASH was entirely re-designed using a plug-and-play concept that allows easy integration of novel predictor or output modules. antiSMASH 2.0 now supports input of multiple related sequences simultaneously (multi-FASTA/GenBank/EMBL), which allows the analysis of draft genomes comprising multiple contigs. Moreover, direct analysis of protein sequences is now possible. antiSMASH 2.0 has also been equipped with the capacity to detect additional classes of secondary metabolites, including oligosaccharide antibiotics, phenazines, thiopeptides, homo-serine lactones, phosphonates and furans. The algorithm for predicting the core structure of the cluster end product is now also covering lantipeptides, in addition to polyketides and non-ribosomal peptides. The antiSMASH ClusterBlast functionality has been extended to identify sub-clusters involved in the biosynthesis of specific chemical building blocks. The new features currently make antiSMASH 2.0 the most comprehensive resource for identifying and analyzing novel secondary metabolite biosynthetic pathways in microorganisms.