Published in

American Psychological Association, Psychology and Aging, 4(26), p. 852-863

DOI: 10.1037/a0025098

Links

Tools

Export citation

Search in Google Scholar

Genetic Architecture of Context Processing in Late Middle Age: More Than One Underlying Mechanism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Studies comparing young and older adults suggest a deficit in processing context information as a key mechanism underlying cognitive aging. However, the genetic architecture of context processing has not been examined. Consistent with previous results, we found evidence of functionally dissociable components of context processing accuracy in 1127 late middle-aged twins ages 51-60. One component emphasizes use of context cues to prepare responses (proactive cognitive control), and the other emphasizes adjustment of responses after probes are presented (reactive control). Approximately one-quarter of the variance in each component was accounted for by genes. Multivariate twin analysis indicated that genetic factors underlying two important components of context processing were independent of one another, thus implicating more than one underlying mechanism. Slower reaction time (RT) on noncontext processing trials was positively correlated with errors on the strongly proactive control component on which young adults outperform older adults, but RT was negatively correlated with errors on the strongly reactive control component on which older adults perform better. Although this RT measure was uncorrelated with chronological age in our age-homogeneous sample, slower RT was associated with performance patterns that were more like older adults. However, this did not generalize to other processing speed measures. Genetic correlations, which reflect shared genetic variance, paralleled the phenotypic correlations. There was also a positive genetic correlation between general cognitive ability and accuracy on the proactive control component, but there were still mostly distinct genetic influences underlying these measures. In contrast, the reactive control component was unrelated to general cognitive ability.