Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 17(14), p. 8917-8931, 2014

DOI: 10.5194/acp-14-8917-2014

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 4(14), p. 5233-5270

DOI: 10.5194/acpd-14-5233-2014

Links

Tools

Export citation

Search in Google Scholar

Influence of corona discharge on the ozone budget in the tropical free troposphere: a case study of deep convection during GABRIEL

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Convective redistribution of ozone and its precursors between the boundary layer (BL) and the free troposphere (FT) influences photochemistry, in particular that of the middle and upper troposphere (UT). We present a case study of convective transport during the GABRIEL campaign over the tropical rain forest in Suriname in October 2005. During a measurement flight on 12 October the inflow and outflow regions of a cumulonimbus cloud (Cb) have been characterized, providing evidence of convective transport. We identified a distinct layer between 9 and 11 km altitude with enhanced mixing ratios of CO, O3, HOx, acetone and acetonitrile. The elevated O3 contradicts the expectation that convective transport brings low ozone air from the boundary layer to the outflow region. The enhanced mixing ratio of ozone in the outflow was mainly of dynamical origin. Entrainment of ozone rich air at the outflow level into the convective outflow accounts for 62% (range: 33-91%) of the observed O3. Ozone is enhanced by only 5-6% by photochemical production in the outflow due to enhanced NO from lightning, based on steady state model calculations, using in-situ observations including the first reported HOx measurements over the tropical rainforest. The "excess" ozone in the outflow is most probably due to direct production by corona discharge associated with lightning. We deduce a production rate of 5.12 × 1028 molecules O3 flash-1 (range: 9.89 × 1026-9.82 × 1028 molecules O3 flash-1), which is at the upper limit of the range of the values reported previously.