Published in

Royal Society of Chemistry, Soft Matter, 18(10), p. 3292, 2014

DOI: 10.1039/c4sm00187g

Links

Tools

Export citation

Search in Google Scholar

Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids

Journal article published in 2014 by Debasish Saha, Yogesh M. Joshi ORCID, Ranjini Bandyopadhyay
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Restricted Access. ; The primary and secondary relaxation timescales of aging colloidal suspensions of Laponite are estimated from intensity autocorrelation functions obtained in dynamic light scattering (DLS) experiments. The dynamical slowing down of these relaxation processes are compared with observations in fragile supercooled liquids by establishing a one-to-one mapping between the waiting time since filtration of a Laponite suspension and the inverse of the temperature of a supercooled liquid that is rapidly quenched towards its glass transition temperature. New timescales associated with primary and secondary relaxation processes, such as the characteristic timescale associated with the slowdown of the secondary relaxation process and the glass transition time, are extracted to describe the phenomenon of dynamical arrest in Laponite suspensions. In results that are strongly reminiscent of those extracted from supercooled liquids approaching their glass transitions, it is demonstrated that a strong coupling exists between the primary and secondary relaxation processes of aging Laponite suspensions in the cage-forming regime. Furthermore, the experimental data presented here clearly demonstrate the self-similar nature of the aging dynamics of Laponite suspensions within a range of sample concentrations.