Published in

Oxford University Press, Nucleic Acids Research, 12(41), p. 6370-6370, 2013

DOI: 10.1093/nar/gkt364

Oxford University Press, Nucleic Acids Research, 5(41), p. e65-e65, 2013

DOI: 10.1093/nar/gks1249

Links

Tools

Export citation

Search in Google Scholar

An efficient method for genome-wide polyadenylation site mapping and RNA quantification

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The use of alternative poly(A) sites is common and affects the post-transcriptional fate of mRNA, including its stability, subcellular localization and translation. Here, we present a method to identify poly(A) sites in a genome-wide and strand-specific manner. This method, termed 3′T-fill, initially fills in the poly(A) stretch with unlabeled dTTPs, allowing sequencing to start directly after the poly(A) tail into the 3′-untranslated regions (UTR). Our comparative analysis demonstrates that it outperforms existing protocols in quality and throughput and accurately quantifies RNA levels as only one read is produced from each transcript. We use this method to characterize the diversity of polyadenylation in Saccharomyces cerevisiae, showing that alternative RNA molecules are present even in a genetically identical cell population. Finally, we observe that overlap of convergent 3′-UTRs is frequent but sharply limited by coding regions, suggesting factors that restrict compression of the yeast genome.