Published in

Wiley, Polymer Composites, 2(27), p. 184-194, 2006

DOI: 10.1002/pc.20177

Links

Tools

Export citation

Search in Google Scholar

Profile Extrusion and Mechanical Properties of Crosslinked Wood-Thermoplastic Composites

Journal article published in 2006 by Magnus Bengtsson, Kristiina Oksman ORCID, Nicole M. Stark
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Challenges for wood-thermoplastic composites to be utilized in structural applications are to lower product weight and to improve the long-term load performance. Silane crosslinking of the composites is one way to reduce the creep during long-term loading and to improve the mechanical properties. In this study, silane crosslinked wood-polyethylene composites were produced by reactive extrusion and subsequently manufactured into rectangular profiles. The silane crosslinked composites were stored in a sauna at 90 °C to increase the degree of crosslinking. The toughness of the silane crosslinked composites was significantly higher than for the non-crosslinked composites. Improved adhesion between the wood and polyethylene phases is most likely the reason for the improved toughness of the crosslinked composites. There was no significant difference in flexural modulus between the crosslinked and non-crosslinked composites. In addition, impact testing showed that the impact strength of the crosslinked composites was considerable higher (at least double) than the non-crosslinked. The effect of temperature on the impact strength of the composites indicated slightly higher impact strength at _30 °C than at 0° and at 25 °C, and then an incrase in impact strength at 60 °C. Crosslinking also reduced the creep response during short-term loading. Moreover, scanning electron microscopy on the fracture surface of the crosslinked composites revealed good adhesion between the polyethylene and wood phases. ; Challenges for wood-thermoplastic composites to be utilized in structural applications are to lower product weight and to improve the long-term load performance. Silane crosslinking of the composites is one way to reduce the creep during long-term loading and to improve the mechanical properties. In this study, silane crosslinked wood-polyethylene composites were produced by reactive extrusion and subsequently manufactured into rectangular profiles. The silane crosslinked composites were stored in a sauna at 90 °C to increase the degree of crosslinking. The toughness of the silane crosslinked composites was significantly higher than for the non-crosslinked composites. Improved adhesion between the wood and polyethylene phases is most likely the reason for the improved toughness of the crosslinked composites. There was no significant difference in flexural modulus between the crosslinked and non-crosslinked composites. In addition, impact testing showed that the impact strength of the crosslinked composites was considerable higher (at least double) than the non-crosslinked. The effect of temperature on the impact strength of the composites indicated slightly higher impact strength at _30 °C than at 0° and at 25 °C, and then an incrase in impact strength at 60 °C. Crosslinking also reduced the creep response during short-term loading. Moreover, scanning electron microscopy on the fracture surface of the crosslinked composites revealed good adhesion between the polyethylene and wood phases.