Links

Tools

Export citation

Search in Google Scholar

The origin of ultrasound-induced friction reduction in microscopic mechanical contacts.

Journal article published in 2002 by Thorsten Hesjedal ORCID, G. Behme
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We present a study of the origin of ultrasound-induced friction reduction in microscopic mechanical contacts. The effect of friction reduction caused by Rayleigh-type surface acoustic waves (SAWs) is demonstrated for propagating and two-dimensional, standing wave fields using lateral force microscopy (LFM). It is shown that with increasing wave amplitude, friction is completely suppressed. To detect and distinguish between the effect of lateral and vertical surface oscillation components on the cantilever movement, we employed multimode scanning acoustic force microscopy (SAFM). We found that the friction reduction effect is only due to the vertical oscillation component. Because this effect does not appear for purely in-plane polarized Love waves, we concluded that the mechanical diode effect is most probably responsible for the SAW-induced lubrication. This explanation is also supported by vertical and longitudinal SAFM measurements, which show that, in areas where friction is completely suppressed, low frequency vertical cantilever oscillations can still be observed, whereas lateral or torsional oscillations are no longer excited.