Published in

Wiley, International Journal of Cancer, 7(124), p. 1727-1735, 2009

DOI: 10.1002/ijc.24108

Links

Tools

Export citation

Search in Google Scholar

Decreased expression of angiogenesis antagonist EFEMP1 in sporadic breast cancer is caused by aberrant promoter methylation and points to an impact of EFEMP1 as molecular biomarker.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was recently described as an antagonist of angiogenesis. Motivated by a strong dependence of tumor growth and metastasis on angiogenesis, we investigated the role of EFEMP1 in human breast cancer. We applied RNA microarray expression analysis and quantitative real-time PCR (QRT) in a total of 45 sporadic breast cancer tissues and found EFEMP1 down-regulation in 59% and 61% of the analyzed tissues, respectively. This down-regulation was confirmed on protein level. Immunohistochemistry in 211 breast cancer tissues resulted in reduced or even abolished EFEMP1 expression in 57-62.5% of the tumors. Bisulphite genomic sequencing in breast cancer cell lines and primary breast cancer tissues revealed promoter methylation as the major cause of this down-regulation. Furthermore, analysis of 203 clinically well characterized primary breast cancers displayed a significant correlation of reduced EFEMP1 protein expression with poor disease-free (p = 0.037) and overall survival (p = 0.032), particularly in those node-positive patients who received adjuvant anthracycline-based chemotherapy, but not in those treated by either cyclophosphamide-methotrexate-5-fluorouracil (CMF) or Tamoxifen. In summary, the presented data demonstrate for the first time the reduced EFEMP1 expression on RNA and protein level in a substantial number of sporadic breast carcinomas and its correlation with epigenetic alterations. Furthermore, these data point towards a possible predictive impact of EFEMP1 expression in primary breast cancer. (c) 2008 Wiley-Liss, Inc.