Published in

SAGE Publications, Journal of Composite Materials, 16(47), p. 1977-1985, 2012

DOI: 10.1177/0021998312453189

Links

Tools

Export citation

Search in Google Scholar

Improving tensile strength and moisture barrier properties of gelatin using microfibrillated cellulose

Journal article published in 2013 by Shaimaa M. Fadel, Mohammad L. Hassan, Kristiina Oksman ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microfibrillated cellulose isolated from bagasse was used to prepare novel nanocomposites using cross-linked gelatin as a biodegradable polymer matrix. Microfibrillated cellulose loadings up to 25% (weight percent) were used. The prepared nanocomposites were characterized regarding their wet and dry tensile strength, water sorption, and water vapor permeability. Nanocomposites’ surfaces were examined by scanning electron microscopy; the scanning electron microscopy images indicated homogeneous distribution of microfibrillated cellulose in the gelatin matrix. Microfibrillated cellulose improved wet and dry maximum tensile stress and modulus of cross-linked gelatin but resulted in a decrease of its strain at break. Microfibrillated cellulose did not affect the water absorption of cross-linked gelatin but significantly improved its moisture barrier property.