Published in

Wiley, ChemPhysChem, 9(17), p. 1264-1272, 2016

DOI: 10.1002/cphc.201501091

Links

Tools

Export citation

Search in Google Scholar

Ultrafast Electron Transfer in Complexes of Doxorubicin with Human Telomeric G-Quadruplexes and GC Duplexes Probed by Femtosecond Fluorescence Spectroscopy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Doxorubicin (DOX) is a natural anthracycline widely used in chemotherapy; its combined application as a chemotherapeutic and photodynamic agent has been recently proposed. In this context, understanding the photoinduced properties of DOX complexes with nucleic acids is crucial. Herein, the study of photoinduced electron transfer in DOX–DNA complexes by femtosecond fluorescence spectroscopy is reported. The behaviour of complexes with two model DNA structures, a G-quadruplex (G4) formed by the human telomeric sequence (Tel21) and a d(GC) duplex, is compared. The DOX affinity for these two sequences is similar. Although both 1:1 and 2:1 stoichiometries have been reported for DOX–G4 complexes, only 1:1 complexes form with the duplex. The steady-state absorption indicates a strong binding interaction with the duplex due to drug intercalation between the GC base pairs. In contrast, the interaction of DOX with Tel21 is much weaker and arises from drug binding on the G4 external faces at two independent binding sites. As observed for DOX–d(GC) complexes, fluorescence of the drug in the first binding site of Tel21 exhibits decays within a few picoseconds following a biphasic pattern; this is attributed to the existence of two drug conformations. The fluorescence of the drug in the second binding site of Tel21 shows slower decays within 150 ps. These timescales are consistent with electron transfer from the guanines to the excited drug, as favoured by the lower oxidation potential of the stacked guanines of G4 with respect to those in the duplex.