Published in

American Institute of Physics, Journal of Applied Physics, 2(106), p. 024506

DOI: 10.1063/1.3176502

Links

Tools

Export citation

Search in Google Scholar

Improving the lifetime of white polymeric organic light-emitting diodes

Journal article published in 2009 by Malte C. Gather ORCID, Sebastian Köber, Susanne Heun, Klaus Meerholz ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report on efficient polymeric white organic light-emitting diodes with unprecedented stability. The investigated devices are based on an electroluminescent copolymer of electron and hole-transporting units and red-, green-, and blue-emitting chromophores. We find that the glass transition of the polymer (Tg=182.5 °C) is the process determining the relation between thermal annealing during fabrication and device lifetime. For devices annealed below Tg, the device lifetime significantly increases with increasing annealing temperature. For annealing temperatures above Tg, however, the current density in the devices rapidly increases while their lifetime slightly decreases. Insight into the underlying processes is provided by atomic force microscopy phase imaging and by UV/visible and fluorescence spectroscopy. We also investigated the influence of the operating temperature of the device: besides the commonly known fact that elevated operating temperatures reduce the lifetime, we discovered that the acceleration coefficient, which determines the scaling of the device lifetime with applied current density, was reduced. At the glass transition, the device lifetime no longer depended on the current density. The device lifetime was improved even further by introducing an additional cross-linkable hole-transport layer. Optimized devices achieve a half-luminance lifetime of 1860 h when operated at room temperature and at an initial luminance of 500 cd m−2. As a result of the relatively balanced stability of the three chromophores, the emission spectrum remains virtually unchanged over the entire device lifetime. Finally, to reduce the time required for the lifetime measurements, we propose to analyze the voltage increase over the first 10–50 h of the lifetime test and find that this allows precisely estimating the lifetime of our devices.