Published in

Springer Verlag, Plasmonics, 2(8), p. 295-305

DOI: 10.1007/s11468-012-9389-6

Links

Tools

Export citation

Search in Google Scholar

Blue-Shifted SPR of Au Nanoparticles with Ordering of Carbon by Dense Ionization and Thermal Treatment

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Thin films of carbon-containing Au nanoparticles (NPs), prepared by the co-sputtering using a neutral Ar atom beam, were irradiated by 120 MeV Ag ions and also annealed, separately, at increasing temperatures in inert atmosphere. The surface plasmon resonance (SPR) band of the nanocomposite film was observed to be blue shifted (similar to 50 nm) in both cases, with increasing fluence and temperature. The structural changes of Au NPs embedded in amorphous carbon matrix were investigated using X-ray diffraction and transmission electron microscopy. A growth of Au NPs was observed with increasing fluence and also with increasing temperature. A percolation of Au NPs was observed at 500 degrees C. A growth of Au NPs with ion irradiation is explained in the framework of a thermal spike model. Raman spectroscopy revealed the ordering of a-C thin films with increasing fluence and temperature, which is ascribed to a change of refractive index and the blue shift of the SPR band.