Published in

Nature Research, Nature Communications, 1(8), 2017

DOI: 10.1038/ncomms13940

Links

Tools

Export citation

Search in Google Scholar

Creating stable Floquet-Weyl semimetals by laser-driving of 3D Dirac materials

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Tuning and stabilising topological states, such as Weyl semimetals, Dirac semimetals, or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast time scales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarised light can be used to switch between Weyl semimetal, Dirac semimetal, and topological insulator states in a prototypical 3D Dirac material, Na$_3$Bi. Our findings are general and apply to any 3D Dirac semimetal. We establish the concept of time-dependent bands and steering of Floquet-Weyl points (Floquet-WPs), and demonstrate how light can enhance topological protection against lattice perturbations. Our work has potential practical implications for the ultrafast switching of materials properties, like optical band gaps or anomalous magnetoresistance. Moreover, we introduce Floquet time-dependent density functional theory (Floquet-TDDFT) as a general and robust first principles method for predictive Floquet engineering of topological states of matter.