Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 6(27), p. 1276-1282, 2007

DOI: 10.1161/atvbaha.107.142638

Links

Tools

Export citation

Search in Google Scholar

Expression of Heme Oxygenase-1 in Human Vascular Cells Is Regulated by Peroxisome Proliferator-Activated Receptors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective— Activation of peroxisome proliferator-activated receptors (PPARs) by lipid-lowering fibrates and insulin-sensitizing thiazolidinediones inhibits vascular inflammation, atherosclerosis, and restenosis. Here we investigate if the vasculoprotective and anti-inflammatory enzyme heme oxygenase-1 (HO-1) is regulated by PPAR ligands in vascular cells. Methods and Results— We show that treatment of human vascular endothelial and smooth muscle cells with PPAR ligands leads to expression of HO-1. Analysis of the human HO-1 promoter in transient transfection experiments together with mutational analysis and gel shift assays revealed a direct transcriptional regulation of HO-1 by PPARα and PPARγ via 2 PPAR responsive elements. We demonstrate that a clinically relevant polymorphism within the HO-1 promoter critically influences its transcriptional activation by both PPAR isoforms. Moreover, inhibition of HO-1 enzymatic activity reversed PPAR ligand-mediated inhibition of cell proliferation and expression of cyclooxygenase-2 in vascular smooth muscle cells. Conclusion— We demonstrate that HO-1 expression is transcriptionally regulated by PPARα and PPARγ, indicating a mechanism of anti-inflammatory and antiproliferative action of PPAR ligands via upregulation of HO-1. Identification of HO-1 as a target gene for PPARs provides new strategies for therapy of cardiovascular diseases and a rationale for the use of PPAR ligands in the treatment of other chronic inflammatory diseases.