Published in

Wiley, The Journal of Physiology, 20(594), p. 5839-5849, 2016

DOI: 10.1113/jp270672

Links

Tools

Export citation

Search in Google Scholar

Cav1.3 (CACNA1D) L-type Ca2+channel dysfunction in CNS disorders

Journal article published in 2016 by Alexandra Pinggera, Jörg Striessnig ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cav 1.3 belongs to the family of voltage-gated L-type Ca(2+) channels and is encoded by the CACNA1D gene. Cav 1.3 channels are not only essential for cardiac pacemaking, hearing and hormone secretion but are also expressed postsynaptically in neurons, where they shape neuronal firing and plasticity. Recent findings provide evidence that human mutations in the CACNA1D gene can confer risk for the development of neuropsychiatric disease and perhaps also epilepsy. Loss of Cav 1.3 function, as shown in knock-out mouse models and by human mutations, does not result in neuropsychiatric or neurological disease symptoms, whereas their acute selective pharmacological activation results in a depressive-like behaviour in mice. Therefore it is likely that CACNA1D mutations enhancing activity may be disease relevant also in humans. Indeed, whole exome sequencing studies, originally prompted to identify mutations in primary aldosteronism, identified de novo CACNA1D missense mutations permitting enhanced Ca(2+) signalling through Cav 1.3. Remarkably, apart from primary aldosteronism, heterozygous carriers of these mutations also showed seizures and neurological abnormalities. Different missense mutations with very similar gain-of-function properties were recently reported in patients with autism spectrum disorders (ASD). These data strongly suggest that CACNA1D mutations enhancing Cav 1.3 activity confer a strong risk for - or even cause - CNS-disorders, such as ASD. This article is protected by copyright. All rights reserved.