Published in

Hindawi, Journal of Chemistry, (2016), p. 1-15, 2016

DOI: 10.1155/2016/8324826

Links

Tools

Export citation

Search in Google Scholar

Recent Development of Catalysts for Removal of Volatile Organic Compounds in Flue Gas by Combustion: A Review

Journal article published in 2016 by Marco Tomatis, Hong-Hui Xu, Jun He ORCID, Xiao-Dong Zhang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Volatile organic compounds (VOCs) emitted from anthropogenic sources pose direct and indirect hazards to both atmospheric environment and human health due to their contribution to the formation of photochemical smog and potential toxicity including carcinogenicity. Therefore, to abate VOCs emission, the catalytic oxidation process has been extensively studied in laboratories and widely applied in various industries. This report is mainly focused on the benzene, toluene, ethylbenzene, and xylene (BTEX) with additional discussion about chlorinated VOCs. This review covers the recent developments in catalytic combustion of VOCs over noble metal catalysts, nonnoble metal catalysts, perovskite catalysts, spinel catalysts, and dual functional adsorbent-catalysts. In addition, the effects of supports, coke formation, and water effects have also been discussed. To develop efficient and cost-effective catalysts for VOCs removal, further research in catalytic oxidation might need to be carried out to strengthen the understanding of catalytic mechanisms involved.