Published in

Wiley, The Journal of Physiology, 19(588), p. 3785-3797, 2010

DOI: 10.1113/jphysiol.2010.188698

Wiley, The Journal of Physiology, p. n/a-n/a

DOI: 10.1113/jp272229

Links

Tools

Export citation

Search in Google Scholar

Prolonged ischaemia impairs muscle blood flow and oxygen uptake dynamics during subsequent heavy exercise

Journal article published in 2010 by Azmy Faisal, Kenneth S. Dyson, Richard L. Hughson ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Muscle oxygen uptake ( ˙VO₂,mus) dynamics at the onset of exercise can be affected by prior heavy exercise.We tested the hypothesis that elevated forearm blood flow (FBF) following prior circulatory occlusion would also be associated with accelerated ˙VO₂,mus dynamics during subsequent heavy hand-grip exercise. Ten trained young men performed 5 min of heavy hand-grip exercise at 30% MVC as a control (CON), and four additional heavy bouts after brief recovery from: (1) prior heavy exercise (Heavy A), (2) heavy exercise followed by 2 min occlusion (Heavy B), (3) 15 min occlusion (Heavy C), and (4) 5 min occlusion with 1 min of moderate exercise during occlusion (Heavy D). FBF was measured by ultrasound and arterial venous oxygen content difference was calculated from venous blood samples to estimate ˙VO₂,mus. FBF and ˙VO₂,mus dynamics were quantified from the rise time. All priming conditions elevated FBF immediately before the start of subsequent heavy bout (Heavy A: 207.4 ±92.8, B: 207.8±75.8, C: 135.8±59.2, D: 199.5±59.0 vs. CON: 57.4±16.6mlmin−1, P <0.01). Unexpectedly, prior occlusion reduced FBF and O2 extraction at the onset of subsequent heavy exercise and consequently slowed ˙VO₂,mus dynamics (Heavy C: rise time=95.9±28.9 vs. CON: 58.6±14.3 s, P <0.01). FBF and ˙VO₂,mus dynamics were faster in Heavy A, B and D compared to CON (P <0.05). Overall, there was a positive correlation between the rise times for ˙VO₂,mus and FBF (r² =0.75) indicating that ˙VO₂,mus dynamics during heavy forearm exercise are linked to O₂ delivery in trained young men. To investigate a possible mechanism for slower adaptation of ˙VO₂,mus following ischaemia, the prior occlusion condition was repeated after ingesting a high dose of ibuprofen. This resulted in restoration of the FBF and ˙VO₂,mus to control levels suggesting that a prostaglandin-mediated mechanism after occlusion retarded the adaptation of blood flow and oxygen consumption at the onset of subsequent heavy exercise.