Published in

American Institute of Physics, Applied Physics Letters, 6(108), p. 063901, 2016

DOI: 10.1063/1.4941793

Links

Tools

Export citation

Search in Google Scholar

Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this work, we report on the competition between two-step two photon absorption,carrier recombination, and escape in the photocurrent generation mechanisms of high quality InAs/GaAs quantum dot intermediate band solar cells. In particular, the different role of holes and electrons is highlighted. Experiments of external quantum efficiency dependent on temperature and electrical or optical bias (two-step two photon absorption) highlight a relative increase as high as 38% at 10 K under infrared excitation. We interpret these results on the base of charge separation by phonon assisted tunneling of holes from quantum dots. We propose the charge separation as an effective mechanism which, reducing the recombination rate and competing with the other escape processes, enhances the infrared absorption contribution. Meanwhile, this model explains why thermal escape is found to predominate over two-step two photon absorption starting from 200 K, whereas it was expected to prevail at lower temperatures (≥70 K), solely on the basis of the relatively low electron barrier height in such a system.