Published in

European Geosciences Union, Biogeosciences Discussions, p. 1-34

DOI: 10.5194/bg-2016-57

Links

Tools

Export citation

Search in Google Scholar

Coastal-ocean uptake of anthropogenic carbon

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Anthropogenic changes in atmosphere-ocean and atmosphere-land CO2 fluxes have been quantified extensively, but few studies have addressed the connection between land and ocean. In this transition zone, the coastal ocean, spatial and temporal data coverage is inadequate to assess its global budget. Thus we use a global ocean biogeochemical model to assess the coastal ocean's global inventory of anthropogenic CO2 and its spatial variability. We used an intermediate resolution, eddying version of the NEMO-PISCES model (ORCA05), varying from 20 to 50 km horizontally, i.e., coarse enough to allow multiple century-scale simulations but finer than coarse resolution models (~ 200 km), to begin to better resolve coastal bathymetry. Simulated results indicated that the global ocean absorbed 2.3 Pg C yr−1 of anthropogenic carbon during 1993–2012, consistent with previous estimates. Yet only 4.5 % of that (0.10 Pg C yr−1) is absorbed by the global coastal ocean, i.e., less than its 7.5 % proportion of the global ocean surface area. Coastal uptake is weakened due to a bottleneck in offshore transport, which is inadequate to reduce the mean anthropogenic carbon concentration of coastal waters to the mean level found in the open-ocean mixed layer.