Published in

American Society of Mechanical Engineers, Journal of Solar Energy Engineering

DOI: 10.1115/1.4032794

Links

Tools

Export citation

Search in Google Scholar

Geometrical Parameters Influencing the Aerodynamic Efficiency of a Small-Scale Self-Pitch High Solidity VAWT

Journal article published in 2016 by Carlos M. Xisto, José C. Pascoa, Michele Trancossi
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, four key design parameters with a strong influence on the performance of a high-solidity variable pitch vertical axis wind turbine (VAWT) operating at low tip-speed-ratio (TSR) are addressed. To this aim, a numerical approach, based on a finite-volume discretization of two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (URANS) equations, on a multiple sliding mesh, is proposed and validated against experimental data. The self-pitch VAWT design is based on a straight-blade Darrieus wind turbine with blades that are allowed to pitch around a feathering axis, which is also parallel to the axis of rotation. The pitch angle amplitude and periodic variation are dynamically controlled by a four-bar linkage system. We only consider the efficiency at low and intermediate TSR; therefore, the pitch amplitude is chosen to be a sinusoidal function with a considerable amplitude. The results of this parametric analysis will contribute to define the guidelines for building a full-size prototype of a small-scale wind turbine of increased efficiency.