Published in

European Geosciences Union, Atmospheric Measurement Techniques, 7(6), p. 1707-1724, 2013

DOI: 10.5194/amt-6-1707-2013

European Geosciences Union, Atmospheric Measurement Techniques Discussions, 1(6), p. 911-948

DOI: 10.5194/amtd-6-911-2013

Links

Tools

Export citation

Search in Google Scholar

Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for fine-mode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical properties of irregularly shaped dust particles. The method is applied to two very different aerosol scenarios: a strong Saharan dust outbreak towards central Europe and an Eyjafjallajökull volcanic dust event. LIRIC profiles of particle mass concentrations for the coarse-mode as well as for the non-spherical particle fraction are compared with results for the non-spherical particle fraction as obtained with the polarization-lidar-based POLIPHON method. Similar comparisons for fine-mode and spherical particle fractions are presented also. Acceptable agreement between the different dust mass concentration profiles is obtained. LIRIC profiles of optical properties such as particle backscatter coefficient, lidar ratio, Ångström exponent, and particle depolarization ratio are compared with direct Raman lidar observations. Systematic deviations between the LIRIC retrieval products and the Raman lidar measurements of the desert dust lidar ratio, depolarization ratio, and spectral dependencies of particle backscatter and lidar ratio point to the applied spheroidal-particle model as main source for these uncertainties in the LIRIC results.