Published in

European Geosciences Union, Biogeosciences, 1(9), p. 565-576, 2012

DOI: 10.5194/bg-9-565-2012

European Geosciences Union, Biogeosciences Discussions, 4(8), p. 8817-8844

DOI: 10.5194/bgd-8-8817-2011

Links

Tools

Export citation

Search in Google Scholar

Plant-driven variation in decomposition rates improves projections of global litter stock distribution

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Plant litter stocks are critical, regionally for their role in fueling fire regimes and controlling soil fertility, and globally through their feedback to atmospheric CO2 and climate. Here we employ two global databases linking plant functional types to decomposition rates of wood and leaf litter (Cornwell et al., 2008; Weedon et al., 2009) to improve future projections of climate and carbon cycle using an intermediate complexity Earth System model. Implementing separate wood and leaf litter decomposabilities and their temperature sensitivities for a range of plant functional types yielded a more realistic distribution of litter stocks in all present biomes with the exception of boreal forests and projects a strong increase in global litter stocks by 35 Gt C and a concomitant small decrease in atmospheric CO2 by 3 ppm by the end of this century. Despite a relatively strong increase in litter stocks, the modified parameterization results in less elevated wildfire emissions because of a litter redistribution towards more humid regions.