Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 18(13), p. 9217-9232, 2013

DOI: 10.5194/acp-13-9217-2013

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 2(13), p. 5649-5685

DOI: 10.5194/acpd-13-5649-2013

Links

Tools

Export citation

Search in Google Scholar

Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. A chemical ionisation mass spectrometer (CIMS) was developed for measuring hydrogen cyanide (HCN) from biomass burning events in Canada using I− reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO) and acetonitrile (CH3CN) was observed, indicating the potential of HCN as a biomass burning (BB) marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR) of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011). The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N) yr−1.