Published in

Wiley, Earth Surface Processes and Landforms, 3(23), p. 261-270

DOI: 10.1002/(sici)1096-9837(199803)23:3<261::aid-esp848>3.0.co;2-5

Links

Tools

Export citation

Search in Google Scholar

Bedrock surface roughness and the distribution of subglacially precipitated carbonate deposits: Implications for formation at Glacier de Tsanfleuron, Switzerland

Journal article published in 1998 by Bryn Hubbard ORCID, Alun Hubbard
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two carbonate deposits are identified on the exposed bedrock surface in the forefield of Glacier de Tsanfleuron, Switzerland: macrocrystalline sparite and microcrystalline micrite. Comparison of the distributions of these forms with lee-side slope facets identified by high-pass filtering of a flow-parallel bedrock profile at a range of frequencies reveals two significant results. First, while the distribution of sparite is consistent with formation in the lee side of subglacial bedrock hummocks, that of micrite is not. This contrasts with previous investigations in which both sparite and micrite have been considered to form by mineral concentration and precipitation during the refreezing of regelation-related basal meltwaters in the lee side of bedrock hummocks. Alternative mechanisms of micrite formation involving carbonate deposition and/or precipitation within subglacial bedrock hollows are proposed. Second, the distribution of sparite is most strongly correlated with the distribution of lee-side slope facets identified by filtering at a frequency equivalent to a hummock wavelength of c. 0·1 m. This correspondence indicates empirically that pressure-related melting and refreezing (regelation) operates most effectively around bedrock hummocks that are shorter than c. 0·1 m. © 1998 John Wiley & Sons, Ltd.