Published in

Elsevier, Experimental Parasitology, 2(130), p. 146-151, 2012

DOI: 10.1016/j.exppara.2011.11.001

Links

Tools

Export citation

Search in Google Scholar

Taenia crassiceps: Host treatment alters glycolisis and tricarboxilic acid cycle in cysticerci

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human cysticercosis by Taenia crassiceps is rare although it is considered of zoonotic risk, especially to immunocompromised individuals. Albendazole and praziquantel are widely used and effective in its treatment. Their active forms inhibit the glucose uptake by the parasite and induce muscle contractions that alter its glycogen levels interfering in the energetic metabolism of the parasite and leading to its death. The aim of this study was to evaluate alterations in glycolysis, the tricarboxylic acid cycle and glucose concentrations caused by low dosage treatments of the hosts with albendazole and praziquantel. Therefore, T. crassiceps intraperitoneally infected mice were treated by gavage feeding with 5.75 or 11.5 mg/kg of albendazole and 3.83 or 7.67 mg/kg of praziquantel. The treated mice were euthanized after 24 h and the cysticerci collected were morphologically classified into initial, larval or final phases. Concentrations of the organic acid produced and glucose were evaluated to detect alterations into the glycolysis and the tricarboxylic acid cycle pathways through chromatography and spectrophotometry. The low dosage treatment caused a partial blockage of the glucose uptake by the cysticerci in spite of the non significant difference between its concentrations. An activation of the tricarboxylic acid cycle was noted in the cysticerci that received the treatment due to an increase in the production of citrate, malate and α-ketoglutarate and the consumption of oxaloacetate, succinate and fumarate. The detection of α-ketoglutarate indicates that the cysticerci which were exposed to the drugs after host treatment present different metabolic pathways than the ones previously described after in vitro treatment.