Published in

Elsevier, Journal of Marine Systems, (78), p. S282-S289

DOI: 10.1016/j.jmarsys.2009.01.014

Links

Tools

Export citation

Search in Google Scholar

Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of Multi-model Super-Ensembles (SE) which optimally combine different models, has been shown to significantly improve atmospheric weather and climate predictions. In the highly dynamic coastal ocean, the presence of small-scales processes, the lack of real-time data, and the limited skill of operational models at the meso-scale have so far limited the application of SE methods. Here, we report results from state-of-theart super-ensemble techniques in which SEPTR (a trawl-resistant bottom mounted instrument platform transmitting data in near real-time) temperature profile data are combined with outputs from eight ocean models run in a coastal area during the Dynamics of the Adriatic in Real-Time (DART) experiment in 2006. New Kalman filter and particle filter based SE methods, which allow for dynamic evolution of weights and associated uncertainty, are compared to standard SE techniques and numerical models. Results show that dynamic SE are able to significantly improve prediction skill. In particular, the particle filter SE copes with non-Gaussian error statistics and provides robust and reduced uncertainty estimates.