Published in

Nature Research, Scientific Reports, 1(4), 2014

DOI: 10.1038/srep04772

Links

Tools

Export citation

Search in Google Scholar

Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

Journal article published in 2014 by Wei Jin Hu, Deng-Ming Juo, Lu You, Junling Wang ORCID, Yi-Chun Chen, Ying-Hao Chu ORCID, Tom Wu
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this work, switching dynamics of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 MV/m and 180° domain wall energy of 60 mJ/m(2) are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.