Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep19734

Links

Tools

Export citation

Search in Google Scholar

Switchable graphene-substrate coupling through formation/dissolution of an intercalated Ni-carbide layer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractControl over the film-substrate interaction is key to the exploitation of graphene’s unique electronic properties. Typically, a buffer layer is irreversibly intercalated “from above” to ensure decoupling. For graphene/Ni(111) we instead tune the film interaction “from below”. By temperature controlling the formation/dissolution of a carbide layer under rotated graphene domains, we reversibly switch graphene’s electronic structure from semi-metallic to metallic. Our results are relevant for the design of controllable graphene/metal interfaces in functional devices.