Links

Tools

Export citation

Search in Google Scholar

NOEL-A no-leak fusion blanket concept

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Thermal analysis and tests of a non-leak fusion blanket concept (NOEL-No External Leak) are presented. The NOEL blanket module operates with a material A that is present in both its solid and liquid phases. The solid phase zone of material A is maintained as a thick lining on the inside of blanket module shells (which are made of stainless steel, aluminum or any other structural metal and serve as the first wall) by cooling tubes embedded in the solid zone. These metal tubes carry a liquid or gas coolant B at a temperature below the melting point of A. Most of the 14 MeV neutron energy is deposited as heat in the module interior, and the temperature increase from the shell to the interior due to heat flow is sufficient to keep the interior liquid. Pressure on the liquid A interior is maintained at a higher level than the pressure on B, so that B can not leak out if failures occur in the coolant tubes embedded in the frozen layer.