Published in

SAGE Publications, Slas Technology, 3(20), p. 201-215, 2015

DOI: 10.1177/2211068214557813

Links

Tools

Export citation

Search in Google Scholar

Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening

Journal article published in 2015 by Ki-Hwan Nam, Alec S. T. Smith, Saifullah Lone, Sunghoon Kwon, Deok-Ho Kim ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately recreate the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when utilizing such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models which accurately mimic the physiological properties of native tissue samples, and highlight the advantages of using such 3D micro-tissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based-on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.