Published in

Public Library of Science, PLoS ONE, 9(4), p. e7163, 2009

DOI: 10.1371/journal.pone.0007163

Links

Tools

Export citation

Search in Google Scholar

Sustained Oscillations of NF-κB Produce Distinct Genome Scanning and Gene Expression Profiles

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

NF-kappaB is a prototypic stress-responsive transcription factor that acts within a complex regulatory network. The signaling dynamics of endogenous NF-kappaB in single cells remain poorly understood. To examine real time dynamics in living cells, we monitored NF-kappaB activities at multiple timescales using GFP-p65 knock-in mouse embryonic fibroblasts. Oscillations in NF-kappaB were sustained in most cells, with several cycles of transient nuclear translocation after TNF-alpha stimulation. Mathematical modeling suggests that NF-kappaB oscillations are selected over other non-oscillatory dynamics by fine-tuning the relative strengths of feedback loops like IkappaBalpha. The ability of NF-kappaB to scan and interact with the genome in vivo remained remarkably constant from early to late cycles, as observed by fluorescence recovery after photobleaching (FRAP). Perturbation of long-term NF-kappaB oscillations interfered with its short-term interaction with chromatin and balanced transcriptional output, as predicted by the mathematical model. We propose that negative feedback loops do not simply terminate signaling, but rather promote oscillations of NF-kappaB in the nucleus, and these oscillations are functionally advantageous.