Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 21(115), p. 6838-6842, 2011

DOI: 10.1021/jp111787b

Links

Tools

Export citation

Search in Google Scholar

Conformational and Photophysical Changes in Conjugated Polymers Exposed to Couette Shear

Journal article published in 2011 by Nikko Y. Chan, Xiao-Tao Hao, Trevor A. Smith ORCID, Dave E. Dunstan
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Conjugated polymers in solution exhibit interesting photophysical behavior, which is dictated by their molecular conformation. The conformations and resulting photophysics can be altered by deformational flows such as simple shear. Solutions of poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) in dimethylformamide (DMF) show large decreases in fluorescence intensity as a function of shear rate, combined with significant spectral shifts upon exposure to shear. The excitation and emission spectra shift toward shorter wavelengths, indicating a change in conformation with shortened conjugated segment lengths attributed to compressive hydrodynamic forces in flow. Addition of poly(methyl methacrylate) to the solutions is shown to alter the fluorescence emission spectral behavior, which we ascribe to energy transfer from the higher energy, short segments to a small population of lower energy conjugated segments. The measured fluorescence changes were not reversible upon cessation of shear, demonstrating that permanent conformational changes are induced by flow.