Published in

American Meteorological Society, Journal of Climate, 14(28), p. 5795-5812, 2015

DOI: 10.1175/jcli-d-14-00724.1

Links

Tools

Export citation

Search in Google Scholar

The Annual-Cycle Modulation of Meridional Asymmetry in ENSO’s Atmospheric Response and Its Dependence on ENSO Zonal Structure

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Previous studies documented that a distinct southward shift of central Pacific low-level wind anomalies occurring during the ENSO decaying phase is caused by an interaction between the western Pacific annual cycle and El Niño–Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central Pacific wind anomalies appears only during traditional eastern Pacific El Niño (EP El Niño) events rather than in central Pacific El Niño (CP El Niño) events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend farther west toward the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies are thus able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle–modulated ENSO response.