Published in

American Chemical Society, Biomacromolecules, 7(9), p. 2056-2062, 2008

DOI: 10.1021/bm800292z

Links

Tools

Export citation

Search in Google Scholar

Synthesis and Modification of Functional Poly(lactide) Copolymers: Toward Biofunctional Materials

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A polylactide copolymer with pendant benzyloxy groups has been synthesized by the copolymerization of a benzyl-ether substituted monomer with lactide. Debenzylation of the polymer to provide pendant hydroxyl groups followed by modification with succinic anhydride affords the corresponding carboxylic acid functionalized copolymer that is amenable to standard carbodiimide coupling conditions to attach amine-containing biological molecules. An amino-substituted biotin derivative was coupled to the carboxyl functional groups of copolymer films as proof-of-concept. In a demonstration of the function of these new materials, an RGD-containing peptide sequence was tethered to copolymer films at various densities and was shown to enhance the adhesion of epithelial cells. This strategy provides the opportunity for the attachment of a variety of ligands, allowing for the fabrication of a versatile class of biodegradable, biocompatible materials.