Published in

Elsevier, Carbon, (94), p. 243-255, 2015

DOI: 10.1016/j.carbon.2015.06.036

Links

Tools

Export citation

Search in Google Scholar

Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture

Journal article published in 2015 by Jingjing Liu, Nannan Sun, Chenggong Sun, Hao Liu, Colin Snape ORCID, Kaixi Li, Wei Wei, Yuhan Sun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spherical carbon beads with a uniform diameter of ca. 0.6–0.8 mm and high mechanical strength can be prepared by hydrothermal synthesis. To optimise the performance of these adsorbents for pulverised fuel post-combustion capture, the efficacy of potassium intercalation via a KOH treatment has been investigated, deliberately using nitrogen-free phenolic resin derived activated carbon (AC) beads so that the enhanced CO2 adsorption achieved by potassium intercalation could be delineated from any other effects. At 25 °C and CO2 partial pressure of 0.15 bar, the adsorption capacity of K-intercalated ACs nearly doubled from 0.79 mmol/g for the untreated carbons to 1.51 mmol/g whilst the effect on the morphology and mechanical strength is relatively small. It was found that only slightly more than ca. 1 wt.% of K is required to give the maximum benefit from intercalation that increases the surface polarity and the affinity towards CO2. The notably increased CO2 uptake of the K-AC beads as a result of modest increase in adsorption heat (32–40 kJ/mol compared to 27 kJ/mol for the original AC), coupled with the fast adsorption kinetics, suggest that the overall energy penalty is potentially superior to strongly basic polyethyleneimine and other amine-based solid adsorbent systems for carbon capture.