Published in

BioScientifica, Journal of Endocrinology, 2(175), p. 277-288, 2002

DOI: 10.1677/joe.0.1750277

Links

Tools

Export citation

Search in Google Scholar

Evidence for genomic and nongenomic actions of estrogen in growth plate regulation in female and male rats at the onset of sexual maturation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently, both estrogen receptor (ER) alpha and beta were detected in growth plate chondrocytes of rats before sexual maturation, implying a role for estrogen at this stage. In this study, therefore, we investigated the effects of ovariectomy (OVX) or estrogen supplementation on parameters of longitudinal growth in 26-day-old rats, which were sexually immature at the start of the experiment. OVX caused an increase in body weight gain, tibial length and growth plate width due to an increased proliferating zone. This increase correlated with an increase in cell number, with a decrease in cell diameter and with increased proliferating cell nuclear antigen (PCNA) immunostaining compared with sham. Interestingly, the increase in proliferation was not caused by an increase in insulin-like growth factor-I (IGF-I) mRNA expression in the growth plate as assessed by real-time PCR. In contrast to OVX, 17beta-estradiol (E(2)) supplementation (0.5 mg/21 days) of 26-day-old female rats caused a strong decrease in body weight gain, tibial length and growth plate width. The latter was explained by a reduction of the proliferating zone width, which correlated with a reduced number of PCNA-positive cells (not significant) and by a reduction of the hypertrophic zone width. In male rats supplemented with E(2), similar effects were observed compared with the females. ERalpha and beta immunostaining was found predominantly in late proliferating and early hypertrophic chondrocytes. OVX did not affect ER expression but E(2) supplementation strongly decreased immunostaining for both ERalpha and beta in both sexes. Besides E(2), desoxyestrone (DE), an activator of nongenomic estrogen-like signaling (ANGEL) and 2-methoxyestradiol (2-MeO-E(2)), a tissue-selective naturally occurring metabolite of E(2), were administered to female and male rats of the same age. Compared with E(2), these compounds had less pronounced, though significant, effects on some parameters of longitudinal growth in both sexes, especially on growth plate characteristics. In conclusion, E(2) may exert effects on longitudinal growth before and at the onset of sexual maturation, despite very low endogenous serum levels at these stages. There may be a role for nongenomic signaling in body weight gain, tibial length and growth plate width but genomic signaling prevails.